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Abstract. This paper deals with the motion detection problem. This
issue is of key importance in many application fields. To solve this prob-
lem, we compute the dominant motion in the sequence using a wavelet
analysis and robust techniques. So, we obtain an estimation of the domi-
nant motion on several image resolutions. This method permits to define
a hierarchical Markov model in a natural way. Thanks to this modeliza-
tion, we overcome two problems: the solution sensibility in relation to the
initial condition with a Markov random field, and the temporal aliasing.
Moreover, we obtain a semi-iterative algorithm faster than using the
multi-scale techniques. Thus, we introduce a fast and robust algorithm
in order to compute the motion detection in an image sequence. This
method is validated on real image sequences.
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1 Introduction and previous works

Motion detection is an important problem in many applications: obstacle detec-
tion, video coding, content-based retrieval, video surveillance. . . Motion detec-
tion consists in separating the image in two regions : stationary region relatively
with the camera motion and moving region. With a fixed camera, a difference
between two consecutive images can be sufficient to get a bi-partition of the
picture in a stationary zone and a motion zone. However, this type of method
is very sensitive to the change of illumination conditions. Many authors have
proposed an improvement of this method. Several methods use statical tests
such as Hsu and al [9] who assume the intensity locally affine, Rosin [17] who
modelizes the noise in the sequence by a normal distribution. Aach and al [1],
Sifakis [18] define the inter-frame difference with a probability density function.
Another approach consists in regularizing the masks of motion detection by a
Markov model [4], [11].
With a mobile camera, the problem is more difficult. We can use some con-
straints on the apparent displacement field of the camera supposed known [19].
Another way consists to compensate the sequence with the dominant motion. It
allows to return to the simpler case of a fixed camera. Then, classical technics
of thresholding [10], or bayesian methods [14], [15] are used. An initial spatial
partition based on intensity, texture or color information can be used too [13].
Moreover, some techniques compute simultaneously motion and detection [5],
[6].
In many methods, the motion computation in the image is performed by the
measure of the displaced frame difference (DFD(x, t) = I(x+v, t+1)− I(x, t)).
Indeed, this method is often preferred to the differential method because it
allows to estimate great displacements in image sequence I(x, t). But, as the
DFD is not linear, the motion estimation by DFD is computed by gradient
descent. This method is more expensive in computing times than the proposed
approach in this work. In this article, we estimate the motion in the sequence
from the Brightness Change Constraint Equation (B.C.C.E.). The problem of
the great displacement estimation, i.e the aliasing problem, is overcomed thanks
to a wavelet analysis of this equation and a motion compensation between each
scale. This method enables to obtain a motion estimation at each scale by the
resolution of an over-determined linear system. The study of B.C.C.E at each
scale gives a measurement characterizing the conformity with the dominant mo-
tion for each point. To solve the motion detection problem from the obtained
multi-scale data, we suggest to modelize the problem by a hierarchical markovian
model. This model combines an a priori dependence in space and in scale with a
Markov random field on the coarsest level of the image. Chardin [16], who used
these fields to texture segmentation, established that these models are in fact a
generalization of the multi-scale approach of [7] and permit to obtain better re-
sults in shorter cpu time. Moreover, contrary to the multi-scale approach which
only uses observations at the finer scale, the hierarchical definition of the prob-
lem uses observations at each scale of the image. This allows to overcome the
temporal aliasing problem generated by the motion estimation with differential
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methods. Thanks to the wavelet analysis and to the hierarchical modelization,
the method presented here is a fast method to detect moving objects in an image
sequence.
This paper is organized as follows: In a first part, we compute the dominant
motion in the scene by a wavelet analysis of the Brightness Change Constraint
Equation and a robust M-estimator. This study enables us to obtain a fast es-
timation of the dominant motion at each resolution of the image. Then, in a
second part, thanks to a hierarchical model, we see how to overcome the tem-
poral aliasing problem inherent to the optical flow estimation by the differential
method and how to solve the problem of motion detection. Finally, we see results
on synthetic and real sequences.

2 Robust dominant motion estimation

Let us consider image sequence I((x, y), t). The problem is to estimate dominant
motion −→v ((x, y), t). To do that, we assume that the intensity constant in time for
each physical point. Thus, by derivation, we obtain the well known Brightness
Change Constraint Equation (B.C.C.E.):

−→
∇I((x, y), t).−→v ((x, y), t) +

∂I((x, y), t)

∂t
= 0 (1)

To estimate the dominant motion in the sequence, we solve the B.C.C.E. (1) by
a wavelet analysis and an M-robust estimator.

Let us consider the wavelets basis (Ψn)i=1···N in L2(R2) centered around
the origin (0, 0), and let us consider the N functions centered around point
(2jk1, 2

jk2) defined as :

ψn
jk(x, y) = 2−jψn(2−jx− k1, 2

−jy − k2),

where k = (k1, k2) and j is the index of resolution. Taking the inner product of
(1) with Ψn

jk, we obtain the following system :

〈
−→
∇I.−→v +

∂I

∂t
, Ψn

jk〉 = 0 ∀n = 1 · · ·N, (2)

where

〈f, g〉 =

∫ ∫
f(x)g(x)dxdy.

We assume that dominant motion due to the camera movement −→v is affine, i.e:

−→v (x, y) = B.Θj , (x, y) = (2jk1, 2
jk2) (3)

with

B =

[
x y 1 0 0 0
0 0 0 x y 1

]

Θj =
(
aj , bj , cj , dj , ej , f j

)T
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This model is a good tradeoff between complexity and representativeness. It can
take into account many kinds of camera motion (translation, rotation, scaling,
deformation).
By substituting affine model (3) in (2), we obtain for each j resolution the
following system :

∀n = 1..N,∀(x, y) = (2jk1, 2
jk2)

aj〈x ∂I
∂x , Ψ

n
jk〉 + bj〈y ∂I

∂x , Ψ
n
jk〉 + cj〈 ∂I

∂x , Ψ
n
jk〉+

dj〈x ∂I
∂y , Ψ

n
jk〉 + ej〈y ∂I

∂y , Ψ
n
jk〉 + f j〈 ∂I

∂y , Ψ
n
jk〉+

〈∂I
∂t , Ψ

n
jk〉 = 0

(4)

and by integrating by parts:

∀(x, y) = (2jk1, 2
jk2), ∀n = 1..N

aj

[
〈xI,

∂Ψn
jk

∂x
〉 + 〈I, Ψn

jk〉
]

+ bj〈yI,
∂Ψn

jk

∂x
〉 + cj〈I,

∂Ψn
jk

∂x
〉+

dj〈xI,
∂Ψn

jk

∂y
〉 + ej

[
〈yI,

∂Ψn
jk

∂y
〉 + 〈I, Ψn

jk〉
]

+ f j〈I,
∂Ψn

jk

∂y
〉 =

〈 ∂I
∂t

, Ψn
jk〉

(5)

We obtain an over-determined system, N × 2p+q−2j equations for an image of
size 2p × 2q and 6 unknowns at each j resolution. To avoid taking into account
the points where hypothesis (3) is not valid, we solve system (5) by a robust
M-estimator of Tukey’s biweight [8].

2.1 Robust motion estimation

We note system (5):
M jΘj = P j . (6)

Where M j and P j are respectively of dimension 6×2p+q−2jN and 1×2p+q−2jN .
We solve this system (6) by a robust M-estimator of Tukey’s biweight ρ. i.e.

we look for Θj solution of:

Θ̂j = arg min
Θ

∑
i

ρ(ri, C)

ri = M jΘj(i) − P j(i).
(7)

Solution Θ̂j of (7) is computed by an Iteratively Reweighted Least Squares
(IRLS):

Θ̂j = min
Θ

N×2p+q−2j∑

i=1

wir
2
i , (8)

where wi = 1
ri

∂ρ
∂x (ri). The resolution of (6) by a robust M-estimator allows us to

avoid the outliers points i.e. the points which are not valid for assumption (3).
Equation (8) gives an estimation of the motion at each j scale. However, in order
to overcome the aliasing problem, we have to do motion compensation between
each scale.
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2.2 Motion compensation

Considering the image sequence is sampled in time, we have to estimate the
temporal derivative of I with a finite difference formula:

〈
∂I

∂t
, Ψn

jk〉 ' 〈I(t+ 1) − I(t), Ψn
jk〉

[2] proves that this approximation is valid if the optical flow verifies :

||−→v || < K.size of wavelets support,

where K is a constant. So, dealing with a fine scale, only minor displacements
can be estimated. Consequently, to compute large displacements, we have to
compute recursively an estimation of the flow at a coarse scale and estimate the
residual between this value and the real flow at a finer scale.
Let us suppose that at coarsest scale j = J , the solution of (6) is ΘJ . At scale
J − 1, we can split vector ΘJ as follows :

ΘJ−1 = PJ→J−1(Θ
J ) + εJ−1,

where Pj→j′ is the projector from scale j to scale j ′:

Pj→j′(Θ) = diag(1 1 2j−j′

1 1 2j−j′

).Θ

Let us introduce ĨΘJ−1(t+ 1) as

ĨΘJ−1((x, y), t+ 1) = I((x, y) +
−→
V PJ→J−1(ΘJ ), t+ 1).

The motion between I(x, t) and ĨΘJ (x, t+ 1) is exactly
−→
V εJ−1 .

εJ−1
p is the solution of system (6) where we replace 〈 ∂I

∂t , Ψ
n
(J−1)k〉 by 〈ĨΘJ−1

p
(t+

1) − I(t), Ψn
(J−1)k〉.

Then, we compute iteratively the optical flow by motion compensation from the
coarsest scale to the finest scale.
Thus, we obtain an estimation of the dominant motion at each j resolution.

3 Moving objects detection with hierarchical model

We have performed the dominant motion by a multi-scale method. This com-
putation allows us to define in a natural way a hierarchical Markov model in
all the resolutions of the image in order to solve moving object detection. This
modelization has two advantages: it overcomes the problem of the sensibility to
the initial conditions that we meet with a classical Iterated Conditional Modes
[3] (I.C.M.), and it can solve the aliasing problem by compensation contrary to
multi-scale methods such as [7], which only uses observations at the finer scale.

Let us note S = ∪J
n=0S

n where Si indicates the level i of the image resolution,
E = {Es, s ∈ S} and Y = {Ys, s ∈ S} respectively the random field of the labels
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of the detected motion and the random field of the observations. Es can take
two values, 0 or 1, where 1 corresponds to a site that does not conform with the
dominant motion and 0 to a site that conforms with this motion. Let us note
En the whole of the labels at level n, i.e. En = {Es, s ∈ Sn} and in the same
way Y n = {Ys, s ∈ Sn}. Finally, let us note i the parent of site i, i the whole of
the children of i and i the whole of the sites forming the tree of root i (fig 1).
With this graphical structure and with some hypotheses described in [16], the
distribution of (X,Y ) can be written as :

P (E = e, Y = y) ∝ exp− [
∑

<i,j>∈SJ vi,j(ei, ej)

+
∑

i/∈SJ wi(ei, ei) +
∑

i∈S oi(ei, yi)]
(9)

where < i, j > designates pairs of neighbors in SJ , vi,j and wi are local functions

Fig. 1. Hierarchical structures. j the parent of the site j, i the whole of the children of
i and k the whole of the sites forming the tree of root k

capturing respectively the spatial a priori and the hierarchical a priori, and oi

expresses the point-wise relation between observed variable yi and unknown xi.
The associated MAP estimator to this distribution :

ê ∈ argmaxeP (e|y) = argmaxeP (e, y) (10)

is computed from the following fast semi-iterative algorithm [16].
For the space and hierarchical potentials, we choose a priori usual functions of
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Potts type :
vi,j(ei, ej) = α[1 − δ(ei, ej)],

wi(ei, ei) = β[1 − δ(ei, ej)].

These potential functions enforce the homogenization of the labels field in space
and in scale.

Let us define observations oi which express the point-wise relation between
observed variables yi.
To assess the error of the motion estimation at point (2jk1, 2

jk2) we set at a j
fixed scale :

E(j, k,Θj) =

∑
N

n=1
||〈
−→
∇I,Ψn

jk〉||C∑
N

n=1
||〈
−→
∇I,Ψn

jk
〉||2

where C = |〈
−→
∇I.

−→
V εj + ĨΘj (t+ 1) − I(t), Ψn

jk〉|.

(11)

This measurement features an interesting property. Indeed, we can establish that

∀ε > 0,

E(j, k,Θj) ≤ λ1

λ1+λ2
ε⇒ ||

−→
V εj −

−→
V jk|| ≤ ε,

E(j, k,Θj) ≥
√

λ2

λ1+λ2
ε⇒ ||

−→
V εj −

−→
V jk|| ≥ ε,

(12)

where
−→
V jk is the real flow at scale j between images I(t) and ĨΘj (t+1) at point

(2jk1, 2
jk2) and where λ1, λ2 are respectively the smallest and the greatest

eigenvalue of

A =

N∑

n=1


 |〈I,

∂Ψn
jk

∂x
〉|2 〈I,

∂Ψn
jk

∂x
〉〈I,

∂Ψn
jk

∂y
〉

〈I,
∂Ψn

jk

∂x
〉〈I,

∂Ψn
jk

∂y
〉 |〈I,

∂Ψn
jk

∂y
|〉2




We define ∀ε > 0 the numbers

ljk = λ1

λ1+λ2
.ε and Ljk =

√
λ2

λ1+λ2
.ε. (13)

According to (18), E(j, k,Θj) translates the error made by approximating the
real optical flow at point (2jk1, 2

jk2) by Vεj ( velocity between the image I(t)

and the image ĨΘj (t+ 1) ).
If E(j, k,Θj) ≤ ljk, we can assert that the error is smaller than ε and if
E(j, k,Θj) ≥ Ljk, the error is larger than ε. This error will enable us to de-
cide if point (2jk1, 2

jk2) follows the dominant motion up to ε.
Thanks to this measurement error, we define oi as follows:

∀xi = (2jk1, 2
jk2) ∈ Sj

oi(ei, yi) =

{
f(E(j, k,Θj

ei
), ljk) if ei = 0

1 − f(E(j, k,Θj
ei

), Ljk) if ei = 1
(14)

where

f(x, d) =
1

1 + e(
−4

d
(x−d))

.
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These potential functions enforce the sites to take label 0 (conform to mo-
tion) in the case where E(j, k,Θj

D) ≤ ljk and to take label 1 (not conform to

motion ) if E(j, k,Θj
D) ≥ Ljk.

So, we have defined a hierarchical Markov model in order to obtain a fast algo-
rithm for the motion detection problem as we can see in the following section.

4 Experimental results

The proposed method has been tested on many sequences. We here present re-
sults obtained on four sequences of size 256×256. In the results, the black areas
represent the areas true to the dominant motion.
Synthetic sequence:

This sequence is a synthetic sequence created to check that the motion com-
pensation permits to detect the moving objects with large displacements. It is
composed of a mobile bottom in translation of 13 pixels towards the left between
the two images, of a circle in translation towards the right of 20 pixels and of a
circle in translation to the bottom of 10 pixels (fig 3(b)). We estimated the dom-
inant motion over 6 levels of resolution (fig 3(c)). Figure (2) shows the cpu times
in seconds of various methods (on a PC Pentium III 933 Mhz). The results show
the method allows to estimate large displacements in the scene thanks to the
motion compensation between each scale of resolution. The moving object de-
tection based on a hierarchical model is compared with two different resolutions
(J=2 and J=3). Moreover, we compare these results with a traditional mono-
resolution I.C.M. algorithm and without motion compensation (fig 3(f)). The
modelization of the moving object detection problem by a hierarchical model
gives good results. The results are almost similar except for the detection of two
small zones in case J=2, normally in conformity with the dominant motion due
to the temporal aliasing. A simple I.C.M. algorithm does not allow to detect cor-
rectly moving objects because of its sensitivity to initialization and of aliasing
temporal and is moreover much longer than our method. In a general way, on
the whole of the sequence, the modelization of problem on 3 levels of resolution
gives good results.
Traffic sequence: In the sequence, the camera is motionless (fig 4(a)), 9 vehi-

cpu times

Dominant motion estimation 1,8s

Motion Detection with J=3 1,2s

Motion Detection with J=2 2,9s

I.C.M mono resolution
without motion compensation

10,8s

Fig. 2. cpu times for different methods.

cles turn left and a vehicle in the top right advances towards the left. We detect



9

correctly the vehicles, except the black car where the spatial gradient is too small
to detect a motion.
Ping Pong sequence: The Ping-pong sequence has a Nil dominant motion (fig
5(a)). The arm of the player, his left hand, the ball and the racket are mobile
and correctly detected.
Car sequence: The car sequence has a dominant motion from the right to the
left caused by the camera displacement. Two cars move with independent mo-
tions and we can see a minor motion of the foliage due by the wind (fig 6(a)). We
have tested our method with two different ε. With ε = 2, as the foliage moves
with minor motion, only the two cars are detected. Besides, with ε = 1 a part of
the tree is detected too.

(a) (b) (c)

(d) (e) (f)

Fig. 3. ε = 1.2, α = 3, β = 50, (a) image test, (b) real motion, (c) dominant motion
estimation, (d) motion detection with J=3, (e) J = 2 , (f) I.C.M. algorithm monores-
olution without motion compensation.

5 Conclusion

We have introduced a new method of motion detection in an image sequence.
This method estimates the dominant motion in the scene thanks to a wavelet
analysis. This analysis enables us to obtain an estimation of the dominant mo-
tion at various scales by motion compensation. From these various data, we have
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(a) (b)

Fig. 4. δ = 1, α = 5, β = 50, (a) original image, (b) motion detection with J=3.

(a) (b)

Fig. 5. ε = 1, α = 1, β = 50, (a) original image, (b) motion detection with J=3.

(a) (b) (c)

Fig. 6. α = 5, β = 100, (a) original image, (b) motion detection with J=3, ε = 1, (c)
motion detection with J=3, ε = 2.
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defined a Markovian hierarchical model. Thanks to the fast algorithm of wavelets
decomposition of Mallat [12], and to this hierarchical modelization, the method
presented here is a fast method to detect moving objects in a sequence.
However, as we can see in the results, the hierarchical modelization generates
blocks effects inherent to the structure. It would be interesting to add new in-
teractions between the levels. Moreover, we will modelize the problem using a
temporal data. So, we will use the label field previously estimated (t − 1) to
compute the next label field (t). This method will make it possible to avoid the
detection of outliers due to the noise in sequences and to the motion estimation
errors.

Appendix:

Let us note Vjk the real velocity at the scale j at point (2−jk1, 2
−jk2).

∃(λ1, λ2) such as:

λ1

λ1 + λ2
||
−→
V εj −

−→
V || ≤ E(j, k,Θj) ≤

√
λ2

λ1 + λ2
||
−→
V εj −

−→
V jk|| (15)

with λ1 and λ2 respectively the smallest and the greatest eigenvalues

A =




N∑
n=1

|〈I,
∂Ψn

jk

∂x 〉|2
N∑

n=1
〈I,

∂Ψn
jk

∂x 〉〈I,
∂Ψn

jk

∂y 〉

N∑
n=1

〈I,
∂Ψn

jk

∂x 〉〈I,
∂Ψn

jk

∂y 〉
N∑

n=1
|〈I,

∂Ψn
jk

∂y 〉|2




Proof:

N∑
n=1

||〈
−→
∇I, Ψn

jk〉||
2 =

N∑
n=1

[|〈I,
∂Ψn

jk

∂x 〉|2 + |〈I,
∂Ψn

jk

∂y 〉|2]

= trace(A)
= λ1 + λ2

and as A is a symmetric positive definite matrix,

λ1||X||2 ≤ XTAX ≤ λ2||X||2 ∀X (16)

−→
V jk verifies:

−→
∇I.

−→
V jk = −

∂I

∂t
. (17)

Consequently,

E(j, k,Θj) =

N∑
n=1

||〈
−→
∇I, Ψn

jk〉||.|〈
−→
∇I.(

−→
V εj −

−→
V jk), Ψn

jk〉|

N∑
n=1

||〈
−→
∇I, Ψn

jk〉||
2
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And thanks to the Cauchy-Schwartz inequality,

E(j, k,Θj) ≤

√√√√√√√

N∑
n=1

|〈
−→
∇I.(

−→
V

εj −
−→
V jk),Ψn

jk
〉|2

N∑
n=1

||〈
−→
∇I,Ψn

jk
〉||2

Moreover,

N∑
n=1

|〈
−→
∇I.(

−→
V εj −

−→
V jk), Ψn

jk〉|
2 =

N∑
n=1

|〈I,
∂Ψn

jk

∂x 〉(Vεj − Vjk)x + 〈I,
∂Ψn

jk

∂y 〉(Vεj − Vjk)y|
2

= (
−→
V εj −

−→
V jk)TA(

−→
V εj −

−→
V jk)

≤ λ2||
−→
V εj −

−→
V jk||

2

(18)

Thus:

E(j, k,Θj) ≤

√
λ2

λ1 + λ2
||
−→
V εj −

−→
V jk||

And, according to the Minkowski inequality,

N∑
n=1

||〈
−→
∇I, Ψn

jk〉||.|〈
−→
∇I.(

−→
V εj −

−→
V jk), Ψn

jk〉| ≥ ||A.(
−→
V εj −

−→
V jk)|| ≥ λ1||

−→
V εj −

−→
V jk||

Consequently,

E(j, k,Θj) =

N∑
n=1

||〈
−→
∇I, Ψn

jk〉||.|〈
−→
∇I.(

−→
V εj −

−→
V jk), Ψn

jk〉|

N∑
n=1

||〈
−→
∇I, Ψn

jk〉||
2

≥
λ1

λ1 + λ2
||
−→
V εj −

−→
V jk||
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