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ABSTRACT

The goal of this work is to find a fast method for motion es-
timation and motion segmentation. We chose to decompose
the motion on a basis functions. That allows us to compute
the velocity of each pixel by only solving a linear system.
The motion segmentation is carried out using a markovian
formulation. We minimize the associated energy by a deter-
minist algorithm. But these choices induce two drawbacks :
a temporal aliasing problem and a sensitivity of the optimi-
zation algorithm with the initialization. To overcome these
two problems, we use a multiresolution method that succes-
sively computes the motion and the segmentation at each
scale by motion compensation. Thanks to this procedure, we
obtain a fast method of motion estimation and segmentation
which does not require either initial spacial segmentation or
dominant motion in the sequence.

1. INTRODUCTION

The motion estimation and motion segmentation in the
image sequence are important problems in numerous appli-
cations : obstacles detection, video coding, content-based
retrieval, video surveillance. . . The motion estimation as-
sign a motion vector to each pixel in the image sequence.
The motion segmentation divides the sequence into sets of
pixels moving coherently. These two problems are closely
related. Indeed, on the one hand, without good motion esti-
mation, we cannot obtain a good motion segmentation and
on the other hand a good motion segmentation allows to ob-
tain better motion estimation.
Various approaches exist in literature about this problem.
Let us classify these methods into three groups : methods
that compute independently the motion and the segmenta-
tion, methods that compute recursively the motion and the
segmentation and those ones that compute the motion and
the segmentation together. In the first case, an initial spa-
tial partition based on intensity, texture or color informa-

tion [6], [9], [1] is often used. A motion estimation is after-
wards computed on each region. Then, the areas are merged
by affine clustering [1], statistical tests [9], Markov random
fields [6]. Considering these methods require an initial spa-
tial segmentation, they are often very high cost in computa-
tional times. In the second case, the methods [10] estimate
recursively the dominant motion and non-conform areas to
this motion. The convergence of this method requires that
the image sequence is governed by a dominant motion. The
third methods minimize an energy which combines at one
and the same time motion information and segmentation
(from variational approaches [5], by bayesian framework
[4], or robust estimators [8]). These methods generate diffi-
cult optimization problems and are costly in time.
In this article, we propose a fast method of motion estima-
tion and segmentation. This method does not require an ini-
tial spatial segmentation, does not suppose that we can ex-
tract a dominant motion in the sequence. The motion esti-
mation is computed using a basis of functions and the seg-
mentation is obtained by a minimization of a markovian
energy with a determinist algorithm. However, we are going
to that to overcome the aliasing problem and to obtain a
good initialization of the determinist algorithm, a multi-scale
approach is necessary. In a first part, we explain our method
in the mono-resolution case. In a second part, we extend the
method in multi-resolution case. Then, we see how to initia-
lize it at the coarsest scale. Finally, we validate this method
on different sequences.

2. MOTION ESTIMATION AND SEGMENTATION
USING FAST AND ROBUST METHOD

Let us consider image partition P = {R1, · · · ,Rp} in p

regions P = {R1, · · · ,Rp} (we will see in the second part
how to obtain this partition). The problem is to compute the
velocity of each region Ri in order to obtain a best motion
segmentation.



2.1. Motion estimation

To overcome the aperture problem and to obtain a fast
motion estimation of each region, we project the Brightness
Change Constraint Equation on basis functions.
Let us consider a basis of functions (fn)n=0···N of L2(R2)
centered around (0, 0). We note for one point s in the image,

fn
s (x) = fn(x − s), ∀n = 1 · · ·N.

To solve the Brightness Change Constraint Equation at point
s is equivalent to solving :

〈
−→
∇I.−→v +

∂I

∂t
, fn

s 〉 = 0 ∀n = 1 · · ·N, (1)

with

〈f, g〉 =

∫ ∫
f(x)g(x)dxdy.

Moreover, to estimate the displacement of each region
Ri, we modelize their motion by an affine model :

−→v Ri
(x, y) = BΘi, (2)

with

B =

[
x y 1 0 0 0
0 0 0 x y 1

]
,

Θi = (ai, bi, ci, di, ei, fi)
T

.

This model is usually considered as a good trade-off bet-
ween model complexity and model efficiency. It can take
into account many kinds of motion (translation, rotation,
scaling, deformation).
Let us note Ni = {s = (x, y)|supp(fn

s ) ⊂ Ri,∀n =
1..N }.
By substituting affine model (2) in (1), we obtain the follo-
wing system :

∀s = (x, y) ∈ Ni,

MsΘi = Ps
(3)

where Ms is a 6 × N matrix and Ps is a vector of size N .
So, in order to estimate the motion of Ri, we have an over-
determined system, (card(Ni) × N) equations and 6 unk-
nowns. To avoid taking into account the points for which
hypothesis (2) is not valid, we solve system (3) by a robust
M-estimator of Tukey’s biweight [7] :

Θ̂i = arg min
Θ

∑
s∈Ni

∑N
j=1 ρ(rs(j)),

rs(j) = (MsΘ − Ps)(j).
(4)

Solution Θ̂i of (4) is computed by an Iteratively Re-
weighted Least Squares (IRLS) :

Θ̂j = min
Θ

∑
s∈Ni

∑N
j=1 ws(j)rs(j)

2,

ws(j) = 1
rs(j)

∂ρ
∂x

[rs(j)].
(5)

The solution of (3) by a robust M-estimator allows us to
avoid the outliers points i.e. the points which are not valid
for the assumption (2).
Equation (5) gives us a simple estimation of the motion of
region Ri, i = 1 · · · p.

2.2. Motion segmentation

In this section, we know the velocity of each region Ri.
The problem is now to segment the image considering this
motion. To do that, we use a markovian formulation. Let S

denote the set of sites s and C the set of cliques of two ele-
ments associated to a second-order neighborhood system V .
The issue of motion segmentation consists in searching a la-
bel field e = {es, s ∈ S} with es ∈ {1, · · · , p}. To solve
this problem, we use the Maximum A Posteriori criterion.
Due to the equivalence between MRF and Gibbs distribu-
tion, the problem can be formulated as the minimization of
the energy :

U(E) =
∑

s∈S

∑N
n=1 ||〈

−→
∇I.−→v Res

+ ∂I
∂t

, fn
s 〉||

2+
λ

∑
<s,s′>∈C(1 − δ(es, es′))

(6)

where

δ(p, q) =

{
1 if p = q,

0 else.

In order to obtain a fast method, we use a determinist algo-
rithm (I.C.M. [3]) for the minimization of (6).
So, thanks to the projection of Brightness Change Constraint
Equation (1) and to the determinist minimization of (6), we
achieve a fast method to estimate the motion and the seg-
mentation. However, this solution generates two problems.
Indeed, the solution of (6) by an I.C.M. algorithm is closely
dependent on the initialization. The second problem is due
to the temporal aliasing. Because the sequence is sampled in
time, we must estimate the temporal derivative with a finite
difference :

∂I

∂t
' I(t + 1) − I(t) (7)

But, in [2], it is proved that this approximation is valid if the
optical flow satisfies :

||−→v || < Cst.size of f support. (8)

Consequently, we have to do a trade-off between the number
of equation (card(Ni)) and the velocity of the regions. To
overcome these problems, we generalize our method with
a multi-scale approach. The sensitivity of I.C.M. is solved
by the projection of the label field from the coarse scale to
the finer scale. The aliasing problem is overcome by motion
compensation between each scale.



3. MULTI-SCALE APPROACH

Using wavelets as basis functions for optical flow com-
putation makes the multi-scale analysis easier. Let us intro-
duce (Ψn)i=1···N a wavelet basis in L2(R2) and :

Ψn
jk(x, y) = 2−jΨn(2−jx − k1, 2

−jy − k2),

where k = (k1, k2) and j is the index of resolution.
We suppose that we have obtained partition P j+1 at coarse
scale j + 1 in pj+1 regions Rj+1

i , i = 1 · · · pj+1 :

Pj+1 : (x, y) 7→ i, (x, y) ∈ Rj+1
i .

with the motion Θ
j+1

i
=

(
a

j+1

i
, b

j+1

i
, c

j+1

i
, d

j+1

i
, e

j+1

i
, f

j+1

i

)T

.

For each point in Rj+1
i ,we can set :

−→v (x, y) = −→v
R

j+1
i

(x, y) + −→v εi
(x, y)

with ||−→v εi
(x, y)|| < ||−→v

R
j+1
i

(x, y)||

Let us introduce Ĩ(t + 1) as

Ĩ((x, y), t + 1) = I((x, y) + −→v
R

j+1

Pj+1(x,y)

, t + 1).

For each point (x, y), the motion between I(t) and Ĩj(t+1)
is exactly of −→v ε

Pj+1(x,y)
(x, y). This motion is estimated at

scale j thanks to the resolution of the following system :

∀(x, y) = 2j(k1, k2) ∈ Rj+1
i ,

〈
−→
∇I.−→v εi

+ ∂Ĩ
∂t

,Ψn
jk〉 = 0 ∀n = 1 · · ·N,

with ∂Ĩ
∂t

= Ĩ(t + 1) − I(t).

(9)

If we set :
−→v εi

(x, y) = BΘj
i ,

the motion is computed using the robust resolution of the
same system as (3), where I(t + 1) is replaced by Ĩ(t + 1).

∀(x, y) = 2j(k1, k2) ∈ N j+1
i ,

MjkΘj
i = Pjk.

(10)

Then, we obtain the segmentation at scale j by the minimi-
zation of the following energy :

U j(E) =
∑

s=2jk∈S

N∑
n=1

||〈
−→
∇I.−→v εes

+ ∂Ĩ
∂t

,Ψn
jk〉||

2

+2jλ
∑

<s,s′>∈Cj

(1 − δ(es, es′)),

U j(E) =
∑

s=2jk∈S

V
j
1 (es) + 2jλ

∑
<s,s′>∈Cj

V
j
2 (E).

(11)
that we initialize with the segmentation found at scale j + 1
and where Cj is the set of cliques at scale j. We add to
label set {1, · · · , pj+1} a waiting label ρ with an energy
V

j
1 (ρ) = Vρ allowing new region creation at scale j.

This multi-scale method therefore allows us to solve the
aliasing problem and the sensibility of the I.C.M., as wells
as to accelerate the computation. What remains to do is to
segment the sequence at the coarsest scale in order to initia-
lize the algorithm.

4. INITIALIZATION

At coarsest scale J , as we do not know a priori the num-
ber of regions in the image, we have two possibilities : to
initialize using only one region and to use waiting label ρ

recursively, or to initialize the method with as many regions
as pixels. The first method used by [10] is equivalent to a
moving object detection at the coarsest scale. This method
is valid only if a dominant motion exists in the sequence.
For this reason, we chose the second idea.
So, at scale J , we have as many regions RJ

i as pixels. The
optical flow at each pixel and consequently at each region is
computed from the following system :

∀s = 2J(k1, k2),{
〈
−→
∇I.−→v RJ

s
+ ∂I

∂t
,Ψn

Jk〉 = 0 ∀n = 1 · · ·N,
−→v RJ

s
= BΘJ

s

(12)
A first segmentation is carried out with the minimization of
UJ . To avoid an over-segmentation of the image, a motion
segmentation by regions is performed considering the label
field E′ = {e′R1

, · · · , e′Rp
}, e′Ri

∈ {1, · · · , p}. The new
segmentation is obtained from the minimization of :

UJ
R(E′) =

p∑

i=1

∑

s∈Ri

V J
1 (e′s)+2Jλ

∑

<s,s′>∈CJ

(1−δ(e′s, e
′
s′)).

(13)
Then, a new motion estimation is computed on each region
and we segment the image pixel by pixel ( minimization of
(11)) and region by region (minimization of (13)). These
three steps are performed until there is no union of one re-
gion with another one. So, we obtain a segmentation at the
coarsest J to initialize our method at scale J − 1.

5. EXPERIMENTS AND RESULTS

The proposed method has been tested on many sequences.
We here present results obtained on two sequences. The first
one, Yosemite synthetic sequence (Fig 1) which is generated
by flying through the Yosemite valley. Calendar (Fig 2) is a
TV sequence involving large displacements. It includes se-
veral different moving objects and a horizontal camera mo-
tion. The calendar translates vertically, the train pushes a
ball and the pendulum rotates. We apply our method on 4
scales with the same parameter of penalization λ = 60 on
the two sequences. In a general way, the motion and the
segmentation are correctly estimated. The proposed method
has been implemented on Matlab with a PC-Pentium III 933
Mhz, the motion estimation and the segmentation take less
than 2 minutes on an image of size 256 × 256.



(a) (b)

(c) (d)

(e)

Fig. 1. (a) Frame of Yosemite sequence, (b) Initialization of
the algorithm J = 4, (c) motion segmentation at j = 2,(d)
final motion segmentation, (e) optical flow estimation.

6. CONCLUSION

We have introduce a method which performs the motion
and the segmentation in an image sequence. This method
uses a wavelet analysis of the optical flow and a markovian
modelization of the segmentation. To overcome the aliasing
problem and the sensitivity of the deterministic algorithm
of optimisation, we introduce a multi-scale method. Thanks
to the fast algorithm of wavelets decomposition of Mallat
and the multi-scale approach, we obtain a fast method of
motion estimation and segmentation. However, we can see
a block effect in the segmentation which can be corrected in
our future works by adding a temporal dependence between
the current segmentation and the previous ones.
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